
© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

1

Towards a Pattern Language for Web Services
Architecture

Ali Arsanjani,
Senior Consulting I/T Architect, Component Competency Lead
IBM Global Services National EAD Center of Competency and

Maharishi University of Management
arsanjan@us.ibm.com

Towards a Pattern Language for Web Services Architecture .. 1

1.1 Introduction... 1
1.2 A Map of the Patterns ... 2
The Patterns ... 3

2 Assess Current State: Assess Current Integration Level ... 4
3 Build Business Architecture First: Business Architecture Drives Software
Architecture .. 5
4 Build Component-based Software Architecture.. 7
5 Services Map to Components .. 9
6 Enterprise Component.. 11
7 Large Grained Service .. 13
8 Use SOAP for Document Transfer .. 14
9 Use SOAP for RPC .. 14
10 Self-describing Service... 15
11 Configurable Profile ... 16
12 Web Services Gateway... 18
13 Transparent Implementation: Indirect Binding; Hide Invocation Protocol 19
14 Graceful Migration; Selective Exposure ... 19
15 Separate Validation from Back-end Processing .. 20
16 Other Patterns ... 21
17 References .. 21

1.1 Introduction
The current set patterns include both methodology and architecture patterns. The
pattern language consists of patterns for five levels or domains: organizational,
methodology, architecture, technology implementation and infrastructure. In this
paper, we will cover the first four domains. It is necessary not to jump into
technology at the start but use these patterns to migrate the organization, methods
and architectural decisions along the right path before applying the more technology
focused implementation mechanisms. It is with this context that we present the first
set of patterns for Web Services Architecture.

mailto:aarsanjani@mum.edu

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

2

1.2 A Map of the Patterns

Discussion. The above RoadMap shows that there are four domains in Web Services.
In each domain, there are corresponding patterns that apply to resolve forces that
arise in that domain. But the application of the patterns may result in forces being
unbalanced in other domains; for example. Map Component-based Software
Architecture uses Web Services Gateway and Enterprise Component, which are
Architecture level patterns.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

3

The Patterns
Below you will find the detailed description of each of the patterns in the following
format:

Context The background, context and situation in which the
problem arises and then forces have tension.

Problem The issues and problems that arise in the context often as
a result of conflicting forces that “pull” in “opposite”

directions and call for design decisions that balance forces
in the solution.

Forces The set of often antagonistic and perhaps mutually
exclusive elements that decision need to be made on.

These “parameters” of the problem space are resolved by
making tradeoffs in given contexts to resolve the forces.

Solution The solution is a resolution of the conflict by balancing
forces based on design decisions that a master designer

makes in a given context. If the context changes, perhaps
other (different) design decisions would have been/will be

made.
Diagram A pictorial depiction of the solution, often with elements of

the problem evident in it.
Solution

Detail/Discussion
If necessary a discussion of the solution, its details and

implications.
Resulting Context What is the result of applying the solution to try and

balance the forces? Do they all get balanced or do some
remain imbalanced? Does the introduction of the solution

lead to the unbalancing of further forces that other related
patterns in the language are to try and balance out?

Implementation
Considerations

Where applicable

Known Uses These have been project the author and colleagues within
IBM have been working on for the past few years. Other

industry reports and projects point in the same directions,
but no explicit reference can now be stated other than

domain or industry in which the projects were
implemented.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

4

2 Assess Current State: Assess Current Integration
Level

Context Organizations are at various stages of architectural maturity. They
need to move on to the next stage in their development.

Problem Should we adopt Web Services immediately? If not, how can we
know when we are ready to migrate? What is the migration path to
web services or a service-oriented architecture?

The problem can be expressed as the inability of the organization
to determine whether it is in terms of information integration; is it
mature enough to start with web services or should it really start
by creating an EAI infrastructure and /or a component-based
architecture first before randomly applying technology to expose
web services.

Forces You need to stay ahead of the industry to provide competitive edge
and yet technology that is still immature or has some pieces
missing in terms of performance, security and other non functional
requirements is risky.

Diagram

Solution Understand the levels of integration and corresponding enterprise
architectures, study the organization and identify where the
organization is today (often various business lines will have
different levels of maturity or concerns) and plan to get to the next
level by addressing organizational, methodology, architecture,
technology implementation and infrastructure/tools issues.

Solution
Discussion

It is key to identify where the organization is in terms of
architecture before embarking on the voyage of a service-oriented
one. There are steps of maturity and levels of integration that build
on top of one another. It is not recommended to “jump” from one
level to the other as a lower level provides the infrastructure and
means to create and support the next level.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

5

Resulting
Context

You have now planned and are executing your migration strategy
based on where you are today.

Implementation
Considerations

You may not need to go all the way up to a utility-based model of
services; a component-based level may be sufficient for satisfying
the business goals of your organization.

Known Uses Various projects done in telecommunications, banking, mortgage
and credit card sectors.

3 Build Business Architecture First: Business
Architecture Drives Software Architecture

Context Business drivers and technology constraints are different. They
different tools and create often different models. Requirements
handed down from business to I/T often suffers because of this
conceptual mismatch, ambiguity and model gap. Technology is
often not aligned with the business and does not deliver value by
specifically addressing business goals.

Problem What kind of architecture will lead and drive the other: business or
I/T? What are the considerations?

Business requirements are usually vague and much is left to
interpretation by I/T. This gap widens as services are exposed that
may not make business sense to do so. Therefore, the problem is
how to use business drivers to define services and components?

Forces Should we start building the I/T infrastructure first? Should the
business drive this process? Can business goals and requirements
drive software or is software architecture merely an
implementation to be made that will fulfill the needs of the
business without the need for explicit mapping from one to the
other?

Solution Therefore, build the business architecture first. Create a Goal
Model, Process Model, Rule Model and Conceptual Model of how the
business operates within the scope of the domain under study.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

6

Diagram

Solution
Discussion

It is necessary to ensure the business value of exposed Web
Services. This is partially accomplished by ensuring traceability of
web services back to business processes and goals. To accomplish
this, we use the Goal Model, which is represented by a Goal-
Services-Graph. This model defines higher level business goals and
gradually refines them using sub-goals until objectives/sub-goals
can be realized using one or more services required to fulfill the
goal. Thus, at each level we could have a set of services associated
with a sub-goal. A convenient alternative is to have the services
only at the leaf node level of the goal graph (as depicted above, in
the structure of the solution).

Use the goal model as a mechanism to map the services that the
software architecture must provide onto the business model and its
goals; thus tying software architecture back to business goals.

Often the task of choosing large-grained component boundaries is
a difficult task. Therefore, Goals Define Services.

Resulting
Context

You now have a business architecture as a driving force behind
defining the software architecture. The Enterprise Components of
the software architecture provide services that map back to and
promise fulfillment of business goals in a highly traceable fashion.

Implementation
Considerations

Take care to list out all services that are required to fulfill a sub-
goal.

Known Uses Large financial services company for internal and international
divisions, Large mortgage company for institutional loan
processing.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

7

4 Build Component-based Software
Architecture

Context You have built a Business Architecture and have defined the goals
of the business and have mapped services to goals. You now want
to go ahead with the details of defining your component software
architecture. You want components that will expose services to
business partners and customers.

Problem How do you define component boundaries? How do you decompose
the business into large-grained enterprise components? What do
you expose as services to the world at large: customers and
business partners?

What criteria do you use for domain partitioning or decomposition?

Services cannot be exposed on their own without components to
provide infrastructure. Otherwise the services become difficult to
maintain, test and track, from a change management perspective
(see Services Map To Components). But components have to be
chosen carefully. Component identification and specification is a
major step in mapping from a business to a component-based
software architecture.

Forces Do you expose fine-grained services, such as methods on a class,
or do you expose large-grained business process level services?

What business objects are in a component’s jurisdiction or
boundary and what falls outside: there are many ways to
decompose – which set of criteria should you use for large-grained
component architectures?

You can decompose by functional area or business process or you
can partition into business objects causing more interaction and
back-and-forth “chatter” between elements in the business that
will be supported by the software architecture.

Solution Processes and functional areas provide a good large-grained
criterion for domain decomposition. Decompose the business
domain into a set of large-grained Enterprise Components by
mapping high-level business processes to subsystems. Expose
services on those enterprise-scale components that correspond to
business process level functions.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

8

Diagram

Solution Detail The domain is partitioned into a set of business process level units

of functionality that align themselves with business goals.
Dependencies between the large-grained components or Enterprise
Components are explicit and help you define the sequence of
development.

ShoppingCart
<<subsystem>>

Customer Management
<<subsys tem>>

ProductCatalog
Subsystem

<<subsystem>>

Order Management
<<subsystem>>

Address Sanitizer
<<subsys tem>>

Credit Verif ication System
<<subsystem>>

Business Subsystem
Interfaces

IAddressSani
tizer

ICreditVerif ic
ation

IOrderManage
mentSystem

ICustomerMana
gementSystem

IProductCatalogSystem

IShoppingCar
t

IDBFacade

1. Holds all interfaces and therefore all
subsystems depending on any interface w ill
depend on the Subsystem Interfaces
Package

2. To separate interface from
implementation, w e keep interfaces
physically separate from their susbstems
packages. Subsystems depend on their
Interfaces (and other interfaces); but
interfaces should not depend on their
implementation subsystem.

Business Services Layer Dependencies

Persistence Subsystem
<<subsystem>>

(from Middlew are)

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

9

Why do we need to build components in the first place? Because
services must ride on top of modularized chunks of business
functionality: enterprise-scale component.

Resulting
Context

You have a software architecture built around large-grained
enterprise components that expose services that map back to the
business goals. The business process areas or functional areas of
the business are supported by and mapped onto loosely coupled
Enterprise Components.

Implementation
Considerations

The management of related functions under a business process
point to including them in the same subsystem. Often the data
services for a component should be managed by the component
itself.

Don’t forget legacy integration and transformation. You can
capitalize on legacy functionality by componentizing it and
including it in the software architecture component model.

The large-grained components are themselves a Composite and
consist of medium to fine-grained components or business objects
or links to legacy systems (see Enterprise Component).

Known Uses Parnas suggest encapsulating design decisions and in the business
realm this relates back to business processes and the goals and
rules within them.

Related
Patterns

Services Map To Components; without a component-based
infrastructure, Services cannot be exposed on their own without
components to provide infrastructure. Otherwise the services
become difficult to maintain, test and track, from a change
management perspective.

5 Services Map to Components
Context You have defined a software architecture and its enterprise

components that map to business architecture, processes and
goals. But you are still not sure the component boundaries or
services are complete or all correct. Often it is unclear what level
of granularity to express as a Web Service.

Problem How do you verify functional coverage of the entire domain and
validate completeness of the software architecture as far as it
provides enough and correct services that map to business goals?

Forces Methods can be implemented by different components? Which
component does a given function or service belong to? It can
belong to two or many : which one should you choose as the
implementer or provider of the service?

Clearly fine-grained components should not be exposed to the
external world; only business level services that provide value
should be exposed.

Solution Use the Goal Model (goals and sub-goals and services) as a guide
to cluster services. Assign services to Enterprise Components
based on the functional areas they relate to and the goals they
fulfill.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

10

Diagram

Solution Detail These services correspond to the use-cases that are encapsulated
within the enterprise component.

Resulting
Context

Enterprise Components in your software architecture now have the
set of services that are required to support the business. This
includes a set of Internal and External Services1

Known Uses Loan processing system exposes services that rely on underlying
components for handling them. Large financial institution relies on
exposure of services within the enterprise in a loosely-coupled
fashion but have large-grained components as the underlying
infrastructure.

1 See pattern with same name.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

11

6 Enterprise Component
Context You have defined the software component architecture and are

sure that all Services Map to Components based on the Goal
Model. The next step is to define the internal workings of this
business process level, large-grained subsystem-level component.

Problem How do we construct these enterprise-scale large-grained
components? What is their internal structure and function?

Forces Each development team can build its own version of a large
component or should we standardize across the organization?

Should we allow teams to build their own internal designs for
large-grained components? Or are standards like EJB enough to
define the internal structure of components? Perhaps not.

Solution Therefore, create an Enterprise Component out of five main
patterns: façade, Mediator, Composite, Rule Object and Adaptor
(External Broker in the diagram).

Diagram

Solution
Discussion

Use a Façade to encapsulate design decisions within the subsystem
that maps to the business process. One or more mediators inside
the EC will handle groups of related service requests for load
balancing and separation of concern purposes. Business rules
across three levels of granularity are needed to encapsulate and
capture the changes in business rules for the Enterprise
Component, medium grained components that make up the
Composite Enterprise Component and the leaf –level business
objects or legacy level adaptors that need to be accessed to
actually provide a given service or group of services.

Resulting
Context

You can now teach this compound pattern to team leads and have
a standardized way of designing and implementing EC’s within the
business line and across the organization.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

12

Implementation
Considerations

Each individual element or participant within the EC can be built
separately facilitating team development and distribution of
effort/labor. Some can focus on legacy integration while other
parts of the teams or sub-teams can write the business objects
and rules.

An important aspect of the enterprise component is that it should
implement messaging, SOAP and RMI-IIOP to be able to handle all
invocations through these access mechanisms and protocols.

Known Uses Many projects in telecommunications, banking, mortgage, patent
processing, etc., use this paradigm in their component models and
implementations.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

13

7 Large Grained Service
Context You have defined and constructed components. Now you want to

decide which services to expose to whom. But first you need to
solve the problem of service granularity for business partners and
customers.

Problem Should you expose a fine-grained method on a class or a larger
grained business –level service?

Forces Should we provide a high-level service as would trigger a business
process or should we provide lower level access to internal I/T
capabilities?

What are the intellectual property implications of exposing lower
level finer-grained services to potential competitors?

Solution Therefore, only expose business processes or high-level use-cases
through the services to clients or business partners.

Diagram

Solution
Discussion

Use-cases often are broken down two or three levels of detail into
sub-uses and “sub-sub” use-cases. Higher-level use-cases are
often mapped back to high-level business processes. These
processes directly support the business while the lower level ones
need not be exposed and only serve to fulfill higher-level ones.

Resulting
Context

You have a set of Enterprise Components that expose large-
grained services to business partners and clients.

Implementation
Considerations

The level of granularity of the service depends on the Goal model
created; the service of business value (satisfies goals) should be
exposed based on a decomposition of business process.

Known Uses Exposure of credit card services for members and third parties in a
large financial institution.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

14

8 Use SOAP for Document Transfer
Context You have identified the data transfer points between components

within the enterprise or across the extended enterprise.
Problem How do you transfer information between arbitrary nodes in a

distributed computing environment where components are hidden
behind firewalls?

Forces You can use any XML stream to send and receive information; and
yet standard envelopes and protocols seem to be better handled
by tools, better recognized by other business lines or partner
organizations. Should you opt for a standard protocol or “roll your
own”? Each have their merits and drawbacks. But you want to also
start getting web services into the organizational culture.

Solution Therefore, define the content of messages inside the SOAP content
and use its header as a standard. Transfer the data using the SOAP
envelope. The data will be represented in XML format but would be
packaged in a recognized SOAP-based envelope format.

Solution Detail You are not constrained to use SOAP for invocation and can use
this as a “foot-in-the-door” to get the enterprise thinking in terms
of using Web Services in a familiar way and “break-in easy”.

Resulting
Context

Data transfer with regular XML is possible; but when you would like
to evolve into RPC, you want to avoid boxing yourself into a
corner.

Implementation
Considerations

Using a SOAP header to transfer data in XML over HTTP can be a
first step to using Web Services protocols in your organization,
without exposing you to the risk of lower performance by using
SOAP. So instead of merely sending XML, you put the XML inside
the SOAP envelope.

Known Uses International Electronic Patent Application Submission
Credit Card Company information interchange between third party
vendors and credit card services

9 Use SOAP for RPC
Context You have set up the organization to use SOAP for Data Transfer.

People have learned how to use SOAP and how to transfer data.
You have defined Large-grained Services and have Tested Them
Inside and are now wanting to Apply Services Outside.

Problem You need loosely coupled services invocable across the internet,
from anywhere. How do you expose services that are invocable
over basic internet protocols?

Forces You need to expose services worldwide to clients and vendors; yet
you need to maintain control over the implementation of these
services.

You can mandate protocols, but most loosely coupled systems
cannot abide by more stringent CORBA-like protocols over the
extended Internet.

Solution Invoke remote loosely coupled services using SOAP over HTTP or
HTTPS (as the need for security changes)

Solution Detail The implementation detail in the backend could bind to any kind of
technology using a Web Services Invocation Framework-like

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

15

protocol.
Resulting

Context
You now have a set of business level, large grained services
exposed for invocation throughout the enterprise and a subset are
exposed to customers and business partners.

Implementation
Considerations

The SOAP envelope consists of a header and a body. The body can
contain any valid XML-based content. Use the header for protocol
recognition; use the contents to send MQ messages containing XML
content models.

Valid the content models upon reception and before further
processing. Separate out the content validation from the back end
business processing (See Separate Validation from Processing
pattern)

Known Uses Expose services for vendors in a supply chain for major credit card
company, third party vendors and other product lines;
Expose Services for Third-parties to use Patent Application
information;
Expose Major Mortgage company’s loan application services as
invocation-based services

10 Self-describing Service
Context You have decided which Large-grained Services will be exposed

and implemented by which Enterprise Components. Now you want
to actually define the interfaces.

Problem What protocol or interface should you use?
Forces You may want to Use SOAP for Data Transfer or Use Soap for

Invocation. But you may not want to bind the implementation to
use SOAP exclusively inside your firewall. But you may want to
migrate to any given technology for invoking the services.

Solution Describe service in WSDL providing self-description features.
Solution Detail Later, you can use Web Services Invocation Framework or a Web

Services Gateway to bind the implementation to legacy systems,
message-queue based systems, EJB’s or CORBA. But you are
covering yourself for UDDI and cultural migration by defining all
services in WSDL; whether you want to use SOAP or not.

Resulting
Context

Now you have to worry about non-functional requirements. These
are specified in a Configurable Profile and is bound to
implementation through a Transparent Binding.

Implementation
Considerations

Use an internal UDDI registry to store /find/bind internal company
confidential information; use an external UDDI registry to expose
less competitive information accessible to clients and business
partners. The two registries is an important implement
consideration that allows a gradual migration (See Graceful
Migration) from secure, intellectual property-based services that
provide competitive edge to those that are okay to be exposed to
business partners and vendors.

Known Uses Used for business lines in a large financial organization to gain
access to a suite of previously inaccessible legacy services that are
wrapped and exposed as web services for inter-company usage
across product lines and business lines.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

16

11 Configurable Profile
Context You would like to be able to configure the software system based on the

needs of different users. I imparts this is a form of personalization. Each
user time may have a personalized configuration, which is initialize whenever
the user logs onto the system or attempts to utilize a specific service. Often
within the context of business lines in product lines, we encounter the
situation in which a large company consists of a set of subsidiaries. Each
subsidiary will have its own unique way of doing business along the same
general guidelines as its parent company. In order to develop applications
software for each business line or product line, it is often necessary to
rewrite portions of the application based on a particular language, currency
or other internationalization characteristics. Another type of customization or
personalization, pertains to that of security. Each user within a particular
geographical location for office branch, may have a set of rules assigned to
them. These rules can be encrypted an externalized as a configuration
profile. They can also be stored in encrypted form, in a database
management system.
Yet another form of personalization is that of a configurable profile. Each
user type will have a profile of its own. For example, institutional users will
have a different profile the retail users of the loan origination system.
In the telecommunications example, each product line such as Wireless,
wireline, DSL, etc., may have a different set of initialization characteristics
that define the way they conduct business by sitting parameters of workflow,
defaults, reference data, Security roles, options, etc.
You want to be able to define a new profile for each user tied without having
to make changes to an existing program. Therefore, often a set of options
are externalized in the form of a properties file.
In the case of deploying Enterprise JavaBeans, the deployment descriptor is
defined. This is often an XML file, which contains information about
locations of files, database connections, transaction isolation and other
properties. This is a configurable profile at the level of individual software
components rather than the user type.

Problem How can we provide the ability to configure different user types or
component types without making intrusive changes to program code?

Forces Defined configuration parameters internally vs. externalization of
configuration parameters: other general parameters that can be identified?
Is it worth externalizing a set of configuration parameters; or the likely to be
changed often to accommodate new types of users?
Complex configuration profile vs. simple configuration profile: should we
attempted to their size a set of configuration profiles and attributes whose
values will be assigned based on user type?

Solution Start with externalizing a set of obviously changing parameters based on
user types. As the types of users change you can add new values to the
attributes. You can also add new attribute sand combination of valid values
as the need arises.

Therefore, externalize the personalization attributes of the user tied and
create a configurable profile. Provide access to the configurable profile so
that there will be no need to make direct modifications to program: in order to
accommodate new types of users.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

17

Diagram

Solution Detail The structure of the Profile(s) can be simple properties files, XML

files or a domain-specific language describing the flow of business
within the large-grained component.

Resulting
Context

Now you have a configurable profile. The flexibility inherent in the
configuration is based on your assessment of the needs of future
users. Thus, the flexibility in configuration is dependent on your
predictions about future variations that are likely to come about.

You’ll know how to manage the potential growth of the
configurable profile. The configurable profile often has a language
of its own, with its own grammar. Therefore management of the
grammar may pose a challenge for users programmers.
Alternatively, if you don’t have to change the grammar a lot, for
using the configurable profile is straightforward.

Implementation
Considerations

The mechanism for implementing the Profile can be anything from
an XML file to a full blown database. The decision to make the
Configurable Profile centralized or distributed lies in how you want
to deploy the corresponding components and whether you want to
have a central point of control.

You might consider multiple profiles, one for each type of
deployment (office/branch versus country; business rules profile
versus office/branch profile).

Known Uses Use of Configurable Profiles in a large mortgage company for
defining the flow for given deployments for business partners; Use
of this profile as a means of deployment in international locations
with various business rules, internationalization criteria for a large
financial service company.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

18

12 Web Services Gateway
Context You want to use Web Services to allow access to your internal

service resources – those you have chosen to expose (See
Selective Exposure (hide the internals, show the ones that are not
compromising for competitive advantage) . You have your
application servers for processing (for example) incoming servlets
or JSP requests (equally valid for ASP scenarios). But you need to
handle the requests for Web Services.

Problem How do you support inbound requests for Web Services in your
architecture? Is there a layer or server that is responsible for this?
Or do you use standard Web Server technology?

Forces Standard Web Servers are inadequate; yet you need new
functionality.

Solution Use a separate server middleware component that provides an
intermediary gateway between Internet and intranet environments
during Web service invocations. Include in it a model for the
management of services. Use "Interceptors" to act on
requests/responses that flow through the gateway.

Solution Detail Web Services Gateway is a middleware component that provides
an intermediary framework between Internet and intranet
environments during Web service invocations. It includes a model
for the management of services (deployment, undeployment, etc.)
and "interceptors" (those pieces of code that act on
requests/responses that flow through the gateway.) The gateway
currently handles only incoming SOAP/HTTP requests (using either
the Apache SOAP or Apache Axis engines), but support for more
channels will be added in the future. At this time, requests passing
through the gateway may be sent to a Java class, an EJB, or a
SOAP server (including another gateway.)

Resulting
Context

You now have a tier in the architecture responsible for handling the
incoming and outgoing requests and responses coming to and
originating from Web Services based protocols and
implementations.

Implementation
Considerations

The gateway builds upon WSDL4J and WSIF (Web Services Invocation
Framework) for deployment and invocation. The Apache SOAP and Apache
Axis engines provide the entry points into the gateway. WSIL4J (from the
WSTK) is used to generate WS-Inspection documents that provide
references to the WSDL documents of deployed services.

A service is deployed to the gateway by deploying a WSDL file that
describes how the gateway should access it. Interceptors
(WSIFInterceptors, to be exact) may be deployed to the gateway
to intercept incoming requests and outgoing responses. Requests
to the gateway arrive via one of the SOAP engines, are translated
into a WSIF message, are passed through any interceptors that are
registered, and are then sent on to the service implementation.
Responses follow the same path in reverse.

Known Uses Apache Axis uses a Web Services Gateway .

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

19

13 Transparent Implementation: Indirect
Binding; Hide Invocation Protocol

Context You have set up a Gateway and Component-based Architecture,
you have Expose Services and are now actively servicing requests
from customers and business partners, vendors and clients alike.
But you have back-end systems that you need to leverage to
actually implement the functionality you have just exposed through
Web Services.

Problem How do we separate interface from implementation in web
services?

Forces Should we use SOAP; is SOAP ready for prime time? Should we
link back to legacy?

Solution Use Web Services Invocation Framework to decouple the
implementation from the WSDL interface definition.

Solution Detail You can now leverage any of your back-end systems, Application-
server based or legacy to support the services you have exposed
through Web Services.

Resulting
Context

You now can link to legacy and reuse all your current assets and
are not constrained to using SOAP for web services
implementation.

Implementation
Considerations

You need the adaptors to talk from your gateway to each of the
implementations; i.e., you need a binding mechanism. WSIF is
such a framework.

Known Uses Apache Apex project, several client engagements in financial
services, mortgage, etc.

14 Graceful Migration; Selective Exposure
Context You know you want to expose services; you are not sure when

they are mature enough. You have Mapped a Component-based
Architecture, Defined Large-grained Services and Enterprise
Components.

Problem When should you expose your Web Services to your clients and
business partners?

Forces Should you expose a service to one project or all projects across
business lines? Should you expose all services withon UDDI
registry?

Solution Use two UDDI registries (at least); one for inside the enterprise for
internal cross project and business line services and one for
gradual migration of tested and robust services to clients and
business partners.

Solution Detail The first UDDI registry is internal the second one external. The first
inside one tests your services and when it makes sense from both
a business and technology view to expose them, then gracefully
migrate them from the inside UDDi registry to the external public
one.

Resulting
Context

You now have preserved intellectual capital and competitive edge
by exposing only those services that you want and make business
sense and do not provide the competition with greater advantage.
Thus you have not only staged your services, tested them, but
have preserved your company’s assets.

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

20

Implementation
Considerations

The first internal one should be secure, the second one is by its
very nature, exposed to the world at large. Have a strict and
strong line of security between the two, on two branches of a
network.

Known Uses Many 'Back Office' and message vendors, such as Tibco, Siebel and
SAP, have announced that they will be supporting the standards
based Web service protocol stack. This will increase the ease by
which internal processes can be exposed and woven into new
business requirements across the value chain.

15 Separate Validation from Back-end
Processing

Context You have established SOAP as a data transmission vehicle. You are
receiving content models and would like to process them.

Problem How can you kepe up with the changes in handling the validation
of content models from the processing of the business logic that
triggers and implements business process level services?

Forces You want to do content validation yet the main purpose is to
support business processing through services.

Solution Separate out the validation of the content model from the actual
back-end business processing with EJB’s or Web Services or
interaction with the legacy systems (See Encapsulate Legacy as
Services)

Solution Detail By isolating the management of business rules and their validation
from the rest of the processing, the former can be changed without
impacting the next steps in the business processing. This is an
extension of the Rule Pattern Language [5].

Resulting
Context

You now can alter the validation of the content model without
affecting the applications related to processing the subsequent
steps in the workflow.

Implementation
Considerations

Content Validation may take on many forms, you may use
Schematron for assertion-based rules, MXL schema for patterns
and regular expressions and Java for actual processing of code-
level validation. All these may need to be orchestrated into a
sequence of validations that may not necessarily use the same
technology throughout, due to the individual limitations of the
technologies. For example, DTD’s cannot define reusable Types or
sequences or ranges, or pattern matching; whereas using XML
Schema these can be accomplished. Alternatively, XML Schema is
data-based and cannot process conditional assertions. For that, a
tool like Schematron may be used to handle the assertion based
rules for content validation of XML content – e.g., as when it is
send through a SOAP for Data Transfer context.

Known Uses Rule Pattern Language; International Patent Application
Submission and Validation

© Ali Arsanjani, International Business Machines Corporation.
Permission granted to reproduce for PloP2002 conference.

21

16 Other Patterns
These are patterns alluded to in the context of some patterns but due to space and time
limitations have not been incorporated into this paper. These include:

1. Selective Exposure
2. Encapsulate Legacy As Services – Explained in article entitled Web Services:

Promises and Compromises, forthcoming, IEEE Outlook.

17 References
1. Web Services Architecture Working Group
2. Gamma, Helm, Johnson, Vlissides, Design Patterns, Elements of Reusable

Object-oriented Software, Addison-Wesley, 1994.
3. Web Services Invocation Framework; Java Community Process API, JCP.
4. Web Services Gateway; www.alphaworks.ibm.com
5. Arsanjani, A., Rule Pattern Language, Pattern Languages of Programming

1999.

http://www.alphaworks.ibm.com/

	Towards a Pattern Language for Web Services Architecture
	Introduction
	A Map of the Patterns
	The Patterns

	Assess Current State: Assess Current Integration Level

